Solid modules over A_{\Box} and $(A, Z)_{\Box}$ 3 the exceptional pushforward
Plan
(1) Motivation
(2) Theorem Statements
(3) Proofs of Theorems
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

1 Motivation

Key Motivation	Generalize coherent duality to non-proper morphisms using
Solid modules	Poincaré duallity for ~ compact.
most familiar	Schemes. in topology
:: : (: form : : :	
Serre Duality	k field, X/k Smooth proper d-dimensional
	$w_{X/k} = \Omega^d_{X/k}$ dualizing sheaf
(1) There is a	natural trace map $\operatorname{tr}_{X/k} \colon \operatorname{H}^{d}(X; \omega_{X/k}) \longrightarrow k \iff \int_{X}$
(2) For all EE	Qh(X), the pairing
₩ ⁴ (X)€)	$ \bigotimes_{k} \operatorname{Ext}_{X}^{d-i}(E, \omega_{X/k}) \longrightarrow H^{d}(X; \omega_{X/k}) \xrightarrow{t_{T_{X/k}}} K $
is perfect.	
Reformulation	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · ·	$H^{d-i}(X; \underline{Hom}_{\chi}(E, w_{\chi/k})) \cong Hom_{k}(H^{i}(X; E), k)$
	$RHom_{\chi}(E, w_{\chi/k})[d] \simeq RHom_{k}(R\Gamma(\chi;E), k)$

> Write $f: X \rightarrow Spec(k)$
$RHom_{\chi}(E, w_{\chi/k})[d] \simeq RHom_{\kappa}(Rf_{*}(E), k)$
Recall from topology For Poincaré Duality for noncompact manifolds, we need to Use compactly supported Cohomology.
Rf* ~~> fi exceptional pushforward
This will exist on the level of solid modules
Goal for rest of Scholze's Notes Show that in a very general setting,
$f_1: D(O_{X, \square}) \longrightarrow D(R_{\square})$ exists, and that without properness there is a trace
$tr_{X/R} : f_{!} w_{X/R} [d] \longrightarrow R$
and duality equivatence
$R^{+}_{X_{D}}(E, w_{X/R})[d] \xrightarrow{\sim} R^{+}_{R}(f_{D}(E), R).$

Notation (A, AL-1,	$x: A[-] \rightarrow A[-]^{})$ instead of $(\underline{f}, \underline{f}, \underline{f}, \underline{f})$
	$\mathcal{O}_{\mathcal{O}}}\mathcal{O}}}}}}}}}}$
	Solid (A^) ~ Mod card (A)
	$\nabla f = \mathbf{h} \mathbf{h} + \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h}$
	$D(A^{n}) := D(Solid(A^{n}))$
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
• • • • • • • • • • • • • • •	

Toward the Exceptional Pushforward f
Goal The affine, absolute case. Given a finitely gen discrete ring A,
$\begin{array}{ll} \text{Construct} & \text{haven't yet shawn } A_{\Box} \\ f_{i} \colon D(A_{\Box}) \longrightarrow D(\mathbb{Z}_{\Box}) & \text{is analytic} \end{array}$
Recall A finitely gen ring
$(A, \mathbb{Z})_{\Box} := (A, S \mapsto \mathbb{Z}_{\Box}[S] \otimes A, A[S] \xrightarrow{\alpha n} \mathbb{Z}_{\Box}[S] \otimes A)$
CanA
$A_{D} := (A, S \longmapsto \lim_{i \in I} A[S_{i}], A[S] \xrightarrow{Can} \lim_{i \in I} A[S_{i}])$
Motivation for f_1 . To construct exceptional pushforwards for nonproper morphisms $f: X \to Y$, try to factor $X \xrightarrow{j} \overline{X} \xrightarrow{j} (compactification)$ $X \xrightarrow{j} \overline{f}$ proper Non-obvious to show
T \searrow_{γ}^{μ} independence of choices!
$f_{i} := \overline{f}_{*} j_{i}$

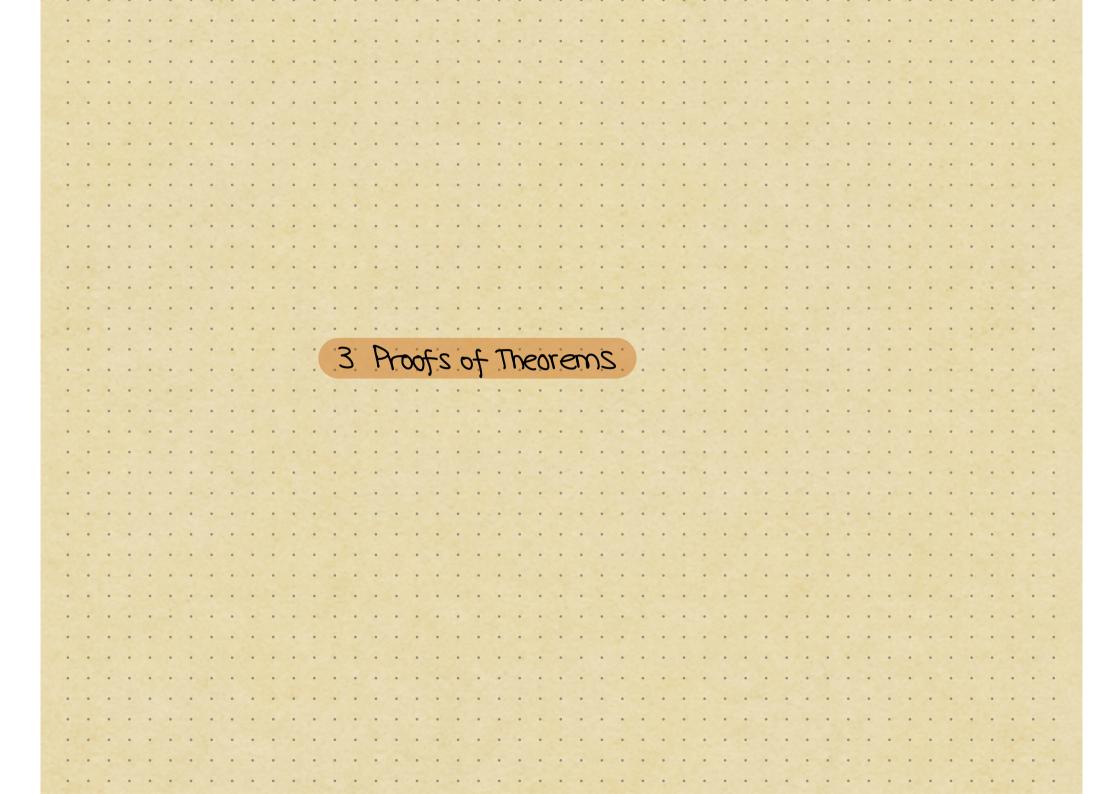
For us $(A,Z)_{D}$ is the compactification!
Lemma Let A be a finitely gen ring. Then A_{II} is analytic and the Morphism of preanalytic rings
$\operatorname{Can}_{A}^{C}(A,\mathbb{Z})_{D} \longrightarrow A_{D}$
is a morphism of analytic rings.
Consequence We have a left adjoint , no a priori
$J^* := (-) \overleftarrow{\otimes} A_{\square} : D((A, \mathbb{Z})_{\square}) \longrightarrow D(A_{\square}) \leftarrow \text{reason to be a}$ $(A, \mathbb{Z})_{\square} : D((A, \mathbb{Z})_{\square}) \longrightarrow D(A_{\square}) \leftarrow \text{reason to be a}$ Fight adjoint
Write $j_*: D(A_{\square}) \longrightarrow D((A, \mathbb{Z})_{\square})$ for the right adjoint given by forgetting the $(A, \mathbb{Z})_{\square}$ -module structure.

Why (A, Z) I is a compactification
Key Point Solid $((A, \mathbb{Z})_{\Pi})$ is supposed to be an enlargement of the cat- egory of quasicoherent sheaves on the adic spectrum Spa(A, \mathbb{Z}). Integral closure of in($\mathbb{Z} \to A$)
Why $Spa(A, \tilde{L})$? $Spa(A, \tilde{L})$ is a 'universal' (and functional) compactification of $Spec(A)$. However, $Spa(A, \tilde{L})$ is an adic space, not just a scheme.
Defining Spa(A, \tilde{Z}) We want a factorization $spec(A) \xrightarrow{J} spa(A, \tilde{Z})$ Alivation spectrum \tilde{F} Proper
f Froper Spec(72) in a universal Way.
> Use the valuative criterion for properness to define the points of the 'compactification' Spa(A, 2).

Not the most general Version, but least complicated
Valuative Criterian for Properness $p: X \rightarrow Y$ morphism of finite type between
locally Noetherian Schemes. Then p is proper if and only if for every valuation
ring V and Commutative Square
$Spec(Frac(V)) \longrightarrow X$
open [] P
$Spec(V) \longrightarrow Y$,
there exists a unique lift $Spec(v) \longrightarrow X$ making the diagram commute.
Point We should define points of our desired compactification spale, Z)
to be commutative squares
$Spec(Finic(V)) \longrightarrow Spec(A)$
Spec(V) \longrightarrow Spec(\mathbb{Z}) actually extra data, but
became relevant in the
relative setup.
> This set is guotiented out by the equivalence relation generated by
the following relation: given a surjection of spectra of valuation rings

	Spect	(W))	
(i.e., fait			at the elements d	efined by
the right	-hand square	e and outer rec	ctangle in the a	diagram
Spe	ec(Frac(W))	\rightarrow Spec(Frac(V))	\longrightarrow Spec(A)	· · · · · · · · · · · ·
			•••••••••••••••••••••••••••••••••••••••	
· · · · · · · · · ·	Spec(W)		\rightarrow Spec(Z)	
are equiv	valent.	· · · · · · · · · · · ·	· · · · · · · · · · ·	
	$Spa(A,T) := {$		\rightarrow Spec(A) $\Big \sim$	
	· · · · · · · · · · · · · · ·	Spec(V)	\rightarrow Spec(72) \int / \sim	••••••
> Then one ha	as to put a topo	ology on Spa(A, Z) as well as a st	reaf of rings.
> One can t	hen Show that	$f: Spec(A) \longrightarrow Spec(A)$	ec(IL) factors as	\$.0.
Composite	of maps of lo	cally ringed space	z	
		dic Spectrum Sp	a(A,A) defined b	

$Spa(A,A) := \left\{ Spec(V) \longrightarrow Spec(A) \right\} / \sim .$
> There is a map
$Spa(A,A) \xrightarrow{Car_A} Spa(A,\tilde{\mathbb{Z}})$
$\begin{bmatrix} Spec(V) & \stackrel{\Phi}{\rightarrow} Spec(A) \end{bmatrix} \longmapsto \begin{bmatrix} Spec(Frac(V)) & \stackrel{\Phi j}{\longrightarrow} Spec(A) \\ j & \downarrow f \\ Spec(V) & \stackrel{\Phi j}{\longrightarrow} Spec(Z) \end{bmatrix}$
Observation Write
$Spa(A,A)_{triv} \subset Spa(A,A)$ and $Spa(A,\overline{Z})_{triv} \subset Spa(A,\overline{Z})$
for the equivalence classes with a representative where V is a field (i.e., a rank o valuation ring). Note that:
(1) The map can A restricts to a bijection
$Can_{A}: Spa(A,A)_{triv} \xrightarrow{\sim} Spa(A,\mathbb{Z})_{triv}$


(2) The map
$Spec(A) \longrightarrow Spa(A,A)$ $\Rightarrow \longmapsto [Spec(k(a)) \longrightarrow Spec(A)]$
is injective with image Spa(A,A) triv.
(3) There are retractions
$Spa(A,A) \xrightarrow{F} Spa(A,A)_{triv} \cong Spec(A)$
$[Spec(V) \rightarrow Spec(A)] \longrightarrow [Spec(Frac(V)) \longrightarrow Spec(A)]$
and
$Spa(A, \tilde{\mathbb{Z}}) \longrightarrow Spa(A, \tilde{\mathbb{Z}})_{triv} \cong Spec(A)$
$Spec(Froc(V)) \longrightarrow Spec(A) $ $Spec(Froc(V)) \longrightarrow Spec(A) $
$ \begin{bmatrix} J & J & J \\ Spec(V) & \longrightarrow Spec(IL) \end{bmatrix} \begin{bmatrix} Spec(Frac(V)) & \longrightarrow Spec(IL) \end{bmatrix} . $
· · · · · · · · · · · · · · · · · · ·

Theorem There is a fully faithful functor
Sch ^{noeth} \longrightarrow {Adic Spaces} that Sends Spec(A) to Spa(A,A). Moreover, there is an isomorphism of
that Sends Spec(A) to Spa(A,A). Moreover, there is an isomorphism of locally ringed Spaces
$(Spec(A), O_{Spec(A)}) \cong (Spa(A, A)_{triv}, F_*O_{Spa(A, A)}).$
Upshot We get a factorization
$Spec(A) \longrightarrow Spa(A,A) \xrightarrow{Can_A} Spa(A,\widetilde{Z})$
f. f. proper
$^{\searrow}$ Spa(I,I)
ϵ
$\operatorname{Spec}(\mathbb{Z})$
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

Theorem 1 A finitely generated I-algebra.
(1.1) j^* admits a fully faithful left adjoint $j_1: D(A_{\Box}) \longrightarrow D((A, \mathbb{Z})_{\Box})$.
$\Leftrightarrow j_* ff$ $D((A,\mathbb{Z})_D)$
(1.2) Projection formula for MED((A,Z))) J*
$j_{i}j^{*}(M) \cong M \otimes j_{i}(A)$ $(A,Z)_{D}$
Def Let $f: Spec(A) \rightarrow Spec(II)$ be a finitely gen II-algebra. Write
$f_{!}: D(A_{D}) \xrightarrow{J_{!}} D((A,\mathbb{Z})_{D}) \xrightarrow{\text{forget}} D(\mathbb{Z}_{D}).$
> Since j and the forgetful functor are left adjoints, f admits a right adjoint $f': D(Z_D) \rightarrow D(A_D)$.
· · · · · · · · · · · · · · · · · · ·

Theorem 2 f: Spec(A) \rightarrow Spec(Z) finitely gen. Z-algebra. Then: (2.1) f ¹ is a left adjoint. Since D(Ab) and D(Zb) are compactly generated
(2.2) fi preserves compact objects (2.3) Projection formula for all $M \in D(\mathbb{Z}_{D})$, $N \in D(A_{D})$ $f_{1}\left(\left(M \otimes A_{D}\right) \otimes N\right) \simeq M \otimes f_{1}(N)$. T_{D}
Theorem 3 f: Spec(A) \rightarrow Spec(Z) finitely gen: Z-algebra Then: (3.1) $f': D(Z_D) \rightarrow D(A_D)$ is given by $f'(M) \simeq \left(M \bigotimes_{Z_D}^{\flat} A_D\right) \bigotimes_{A_D}^{\flat} f'(Z)$. (3.2) $f'(Z)$ is a bounded complex of discrete A-modules.
(3.3) $f^{!}: D(\mathbb{Z}_{D}) \longrightarrow D(A_{D})$ preserves discrete objects. $\leftarrow (3.1) + (3.2)$ (3.4) If f is a complete intersection, then $f^{!}(\mathbb{Z}) \in D(A)$ is invertible.

Initial Reduction Can reduce to A = Z[t].
(1) Since A is fg, We can Choose a Surjection
$\mathbb{Z}[t_1,,t_n] \longrightarrow A.$
A simple base change argument lets us reduce to $A = \mathbb{Z}(t_1,, t_n]$.
(2) An inductive argument lets us reduce to $n=1$.
Key Idea $f_1(A)$ can be computed as 'functions near the boundary' of Spec (A). $A := \mathbb{Z}[t]$, $A_{\infty} := \mathbb{Z}(t^{-1})$
> We'll Show $j_1(A) \simeq (\mathcal{I}(t^{-1})/\mathcal{I}(t^{-1}))$
$f'(\mathbb{Z}) \simeq \mathbb{Z}[t][1]$

Goal Once we know that A_{D} is analytic, we know
$D(A_{\Box}) \subset D(Mod^{cond}(A)) \supset D((A, \mathbb{Z})_{\Box})$
We then want to: (1) Show that the forgetful functor $j_*: D(A_{\mathbb{D}}) \rightarrow D((A,\mathbb{Z})_{\mathbb{D}})$ is an inclusion.
(2) Provide an embedding $D(A_{\infty}) \hookrightarrow D((A, \mathbb{Z})_{\Box})$
(3) Show that $D((A, \mathbb{Z})_{\mathbb{D}})$ is the recollement of $D(A_{\mathbb{D}})$ with $D(A_{\infty})$. $(-) \bigotimes_{(A,\mathbb{Z})_{\mathbb{D}}} A_{\infty}$ $D(A_{\mathbb{D}}) \leftarrow j^{*} \longrightarrow D((A,\mathbb{Z})_{\mathbb{D}}) \longleftrightarrow D(A_{\infty})$ $(-) \bigotimes_{(A,\mathbb{Z})_{\mathbb{D}}} A_{\infty}$ $(-) \bigotimes_{(A,\mathbb{Z})_{\mathbb{D}}} A_{\infty}$ $(-) \bigotimes_{(A,\mathbb{Z})_{\mathbb{D}}} A_{\infty}$ $(-) \bigotimes_{(A,\mathbb{Z})_{\mathbb{D}}} A_{\infty}$
In fact, (2) and (3) will be used to show A_{B} is analytic.

Step 2
Recall Let $(C, \emptyset, 1)$ be a symmetric monoidal ∞ -category. A commutative algebra R is C is idempotent if the multiplication $R \otimes R \rightarrow R$ is an equivalence.
> In this case, being an R-module is a property: the forgetful functor $Mod_{R}(C) \rightarrow C$ is fully faithful with image those $X \in C$. Such that $T \otimes 1 \xrightarrow{id \otimes unit} Y \otimes R$ is an equivalence.
Point Want to show that A_{∞} is idempotent in $D((A,Z)_{D})$.
Observation 1 There is a Short exact sequence
$0 \longrightarrow \mathbb{Z}[u] \bigotimes_{\mathbb{Z}} \mathbb{Z}[t] \xrightarrow{ut-1} \mathbb{Z}[u] \bigotimes_{\mathbb{Z}} \mathbb{Z}[t] \longrightarrow \mathbb{Z}(t^{-1}) \longrightarrow 0$
Consequence 2 $\mathbb{Z}[\mathbb{I}_{\mathbb{Z}}] \otimes \mathbb{Z}[\mathbb{I}_{\mathbb{Z}}]$ compact projective $\Longrightarrow A_{\infty}$ is compact in Solid($(A,\mathbb{Z})_{\mathbb{D}}$).

Consequence 3 Using this presentation of A00, we see that
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Consequence $f = Mod_{A_{\infty}} (D((A, \mathbb{Z})_{D})) \xrightarrow{1} D((A, \mathbb{Z})_{D})$
$M \xrightarrow{\sim} M \stackrel{i}{\otimes} A_{\alpha}$ $(A, \mathbb{Z})_{D}$ $Rtton(A_{\alpha}, -).$
Lemma 5 Let $C_* \in D(Mod^{cond}(A))$ be such that each c_i is a direct
Sum of products of copies of A. Then
$RHam_{A}(A_{\infty},C_{*}) \simeq O \ .$
Proof:
Since $D((A, Z)_{O}) \subset D(Mod^{cond}(A))$ is closed under limits \$ colimits:
(1) By writing $C_* \simeq \lim_{n} C_{*\geq n}$, can assume C_* is connective.
brutal truncation

(2) Since A_{∞} is compact, by writing C_* as a filtered colimit, suffices to treat the case $C_* = \prod_{I} A_{II}$
\sim reduces to $C_* = A$.
By Observation 1,
$RHom_{A}(A_{\infty},A) \simeq \left[RHom_{\mathbb{I}}(\mathbb{Z}[u],A) \xrightarrow{u_{t}-1} RHom_{\mathbb{I}}(\mathbb{Z}[u],A)\right]$
$\simeq \left[A[u^{-1}]/A \xrightarrow{u \leftarrow -1} A[u^{-1}]/A \right]$
$\simeq \left[\mathbb{Z} \left[u^{-1} \right] \xrightarrow{-1} \mathbb{Z} \left[u^{-1} \right] \xrightarrow{-1} \right] \leftarrow \text{acyclic} \qquad \square$
Lemma 6 For any Set I,
$\operatorname{Coker}\left(A \otimes \prod_{\mathcal{I}} \mathcal{I} \hookrightarrow \prod_{\mathcal{I}} A\right) \in D(A_{\infty})$
> Need this fact + Lemma 6 to see that A_{D} is analytic.

Proof	Z[t] © IJZ [$\xrightarrow{\mathcal{I}} \mathbb{Z}[f] \xrightarrow{\mathcal{I}}$	$\rightarrow Coker_1 - _2$	0
· · · · · ·	$\mathbb{Z}(\underline{t}^{-1}) \otimes \prod_{i=1}^{T} \mathbb{Z}[\underline{t}^{-1}] \subset \mathbb{Z}[\underline{t}^{-1}] \subset \mathbb{Z}[\underline{t}^{-1}] \subset \mathbb{Z}[\underline{t}^{-1}]$	$\longrightarrow \prod_{\mathcal{I}} \mathbb{Z}(\mathbb{F}) \longrightarrow$	$\rightarrow Coker_2 -$	$ 0 \leq \cdots$
	$\prod_{\mathcal{I}} t^{-1} \mathbb{Z} [t^{-1}] \xrightarrow{\sim}{}$	$\longrightarrow \prod_{I} t^{-1} \mathbb{Z}[t^{-1}]$	• •	Sequence of Z((t-1))-modules
			· ·	· · · · · · · · · · · · · · · · · · ·
	· ·			
· · · · · ·			· · · · · · · · ·	· ·

Proof that Z[t] is analytic
Let C* ED(Mod ^{cond} (A)) be such that each Ci is a direct sum of
products of copies of A.
Need to show For S extremally disconnected,
Rttom _A (A[S], C _*) ~ Rttom _A (A _U [S], C _*).
· · · · · · · · · · · · · · · · · · ·
Since $C_* \in D((A, \mathbb{Z})_0)$, we know that
Rttom _A (A[S], C _*) ~ Rttom _A ((A, \mathbb{Z}) ₁ (S], C _*).
· · · · · · · · · · · · · · · · · · ·
Since $\mathbb{Z}_{0}[S] \cong \prod_{I} \mathbb{Z}$ for some set I, we have
· · · · · · · · · · · · · · · · · · ·
$(A,\mathbb{Z})_{D}[S]\cong A \otimes \prod_{\mathbb{Z}} \mathbb{Z}$ and $A_{D}[S]\cong \prod_{\mathbb{Z}} A$.
$\mathbf{I}_{\mathbf{I}} = \mathbf{I}_{\mathbf{I}} + $
So we need to see that
$RHrrr = \left(A \otimes \Pi T T r \right) \sim PHrrr = \left(\Pi A c \right)$
Rttom _A $(A \otimes \prod \mathbb{Z}, \mathbb{C}_{*}) \simeq Rttom_{A} (\prod A, \mathbb{C}_{*})$.
Equivalently, that

Rttom _A (c	oker $\left(A \otimes \prod \mathbb{Z} \longrightarrow \prod A \right), C_{*} $	~ 0 1. By Lemma 5
	As-module by Lemma 6	$\mathbb{R} \text{Hom}(A_{\infty}, C_{\star}) \approx 0$
		· · · · · · · · · · · · · · · · · · ·
• • • • • • • • •		

	Proof of Theorem 1	•
Lemma 7 Ker	$(j^*: D((A,\mathbb{Z})_{\square}) \longrightarrow D(A_{\square})) = D(A_{\infty})$	•
Proof	· · · · · · · · · · · · · · · · · · ·	•
$\leftarrow (\mathcal{A} \land \mathcal{A}) \to \mathcal{M}$	$j^*(M)$ is a module over $A_{\infty} \otimes A_{\Box} \simeq 0$. $(A,\mathbb{Z})_{\Box} \sim 0$. Lemma 5	•
> Ker(j*) is ger	erated by the A_{∞} -modules \leftarrow Lemma 6	•
		•
Co	$\operatorname{er}\left(A \otimes \prod_{\mathcal{I}} \mathcal{I} \hookrightarrow \prod_{\mathcal{I}} A\right)$	•
· · · · · · · · · · · · ·		
· · · · · · · · · · · · · · ·		•
	· · · · · · · · · · · · · · · · · · ·	•
		•

Recollection on Recollements
Definition Let X be a stable ~- category and
$i_*: Z \hookrightarrow X$ and $j_*: U \hookrightarrow X$
Stable subcategories. We say X is the recollement of (Z,U) if:
(1) $i_*: Z \hookrightarrow X$ admits a left adjoint $i^*: X \longrightarrow Z$.
(2) $j_* : U \longrightarrow X$ admits a left adjoint $j^* : X \longrightarrow U$.
(3) The composite $Z \xrightarrow{i_*} X \xrightarrow{j_*} U$ is zero.
(4) The functors $i^*: X \rightarrow Z$ and $j^*: X \rightarrow U$ are jointly conservative.
Lemma In this situation:
(1) i* admits a right adjoint i': $X \rightarrow Z$ defined by
$i_*i^! := fib(id_X \xrightarrow{unit} j_*j^*)$
free since j* is ff:
(2) j* admits a fully faithful left adjoint ju U ~> X defined by

	$J_{i} j^{*} := fib(id_{X} \xrightarrow{unit} v_{*} v^{*})$
(3) j*: UC	-> X identifies U with the right orthogonal complement
	$Z^{\perp} := \{ x \in X \mid \forall z \in Z, Map_{X}(i_{*}(z), x) \simeq 0 \}$
(1) j. u -	-> X identifies U with the left orthogonal complement
	$^{\perp}Z := \{ x \in X \mid \forall z \in Z, Map_{X}(x, i_{*}(z)) \geq 0 \}.$
	$Z \xrightarrow{i^{*}}_{i_{*}} \xrightarrow{j_{*}} $
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Lemma	Assume we are given adjunctions of stable on-categories:
· · · · · · · · · ·	$Z \xrightarrow{i_{*}} X \xrightarrow{j_{*}} U$
The following	ng are equivalent:
(1) X is 4	the recollement of (Z,U).
(2) Z ~ Ke	$\Gamma(j^*; X \to U).$
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

	Back to Theorem	1.	
Our Situation	$D(A) = \frac{(-)}{2}$	$(-) \otimes A_{D}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D(A_{\infty}) D((A \otimes \overline{A}))$ $R Hom(A_{\infty}, \overline{A})$; <u> </u>	
and $D(A_{\infty}) = H$	<er (j*).="" by="" lemma<="" td="" the=""><td>i:</td><td>· · · · · · · · · · · · ·</td></er>	i :	· · · · · · · · · · · · ·
> There is an Computing L	extreme fully faithful sing the formula for	heft adjoint ji:D di, we see that	$(A_D) \hookrightarrow D((A, \mathbb{Z})_D)$
J.J*(M)	$fib \left(M \otimes A_{\Box} \right) = fib \left(M \otimes A_{\Box} \right)_{\Box}$	$\begin{array}{ccc} & & & \downarrow \\ A & \otimes & M & \longleftarrow \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	$\simeq M \otimes fib(A \longrightarrow (A, \mathbb{Z})_{D})$	(æ.A.	
	$\simeq M \stackrel{b}{\otimes} A / A_{\infty}[-1]$ $(A, \mathbb{Z})_{D}$	• • • • • • • • • • • • • • • •	

Projection Formula (1.2)	
jij*(M) 2 M	$(A, 7)_{-}$
Immediate from the definition of Ju	
() (Yay! Thm 1) is done!	· · · · · · · · · · · · · · · · · · ·
	 • • • • • • • • • • • • • • • • • • •
	· · · · · · · · · · · · · · · · · · ·
	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· ·
· · · · · · · · · · · · · · · · · · ·	· ·

Proof of Theorem 2
Proof that fi preserves compact objects (2.2)
The objects Π_{I} A form a collection of compact generators for $D(A_{D})$. Computing:
$j_{I}\left(\prod_{I} A\right) \stackrel{\sim}{=} j_{I} j^{*} \left(A \otimes_{I} \prod_{I} Z\right)$
$[f-](A \setminus A) \otimes (\Sigma T \otimes (\Sigma T \otimes A)) \simeq$
$\stackrel{\sim}{=} \prod_{I} \mathbb{Z} \otimes (A_{\infty}/A) = 17$ $\stackrel{\sim}{=} \mathbb{Z} \otimes \mathbb{Z}_{0}$ $\stackrel{Prop. (0.3)}{=} \mathbb{Z}$
$[f-3(A _{\infty}A)\prod_{I} \simeq \prod_{k=1}^{r} \sum_{l=1}^{r} (I)\sum_{l=1}^{\infty} (I)\prod_{l=1}^{\infty} (I)\prod$
Now note that $A_{\infty} _{A} = \mathbb{Z}(t^{-1})/\mathbb{Z}[t]$
is compact in $D(\mathbb{Z}_{D})$.

Proof of Projection Formula (23)
We want to show that for all $MeD(I_{\Box})$ and $NeD(A_{\Box})$,
$f_{!}\left(\left(M\bigotimes_{\mathbb{Z}_{D}}^{\mathbb{Z}}A_{D}\right)\bigotimes_{\mathbb{A}_{D}}^{\mathbb{Z}}N\right)\simeq M\bigotimes_{\mathbb{Z}_{D}}^{\mathbb{Z}}f_{!}(N).$
For this, it suffices to prove the more refined formula
(*) $j_{I_{D}}\left(\left(M\overset{\otimes}{\otimes}A_{D}\right)\overset{\otimes}{\otimes}N\right) \simeq \left(M\overset{\otimes}{\otimes}A_{D}\right)\overset{\otimes}{\otimes}J_{I_{D}}(N).$
Note that:
(1) After (-) & Aoo, both terms vanish.
(2) After applying j*, both sides are the same.
The recollement of $D((A, \mathbb{Z})_{D})$ into $D(A_{D})$ and $D(A_{\infty})$ shows that $(*)$ holds.
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

Proof of Theorem 3
Proof that $f^!(\mathbb{Z})$ is discrete + invertible (3.2) + (3.4)
$f'(\mathbb{Z}) \simeq \operatorname{RHom}_{\mathbb{Z}}(f_{1}(\mathbb{Z}(1)), \mathbb{Z})$ adjunction
$\simeq \operatorname{RHom}_{\mathbb{Z}}((\mathbb{Z}(+^{-1}\mathbb{P} \mathbb{Z}(+)))))$
$ \simeq \operatorname{RHom}_{\mathbb{Z}}(\mathbb{Z}(t^{-1})/\mathbb{Z}(t^{-1}$
Proof of formula for f? (3.1)
We want to Show
$f^{!}(\mathcal{M}) \simeq \left(\mathcal{M} \bigotimes_{\mathbb{Z}_{D}}^{\mathbb{Z}} \mathbb{A}_{D}\right) \bigotimes_{\mathbb{A}_{D}}^{\mathbb{Z}} f^{!}(\mathbb{Z})$
Note that by adjunction
$f^{!}(\mathcal{M}) \longleftrightarrow \left(\mathcal{M} \bigotimes_{\mathcal{Z}_{D}}^{\mathcal{L}} A_{\mathcal{D}} \right) \bigotimes_{\mathcal{A}_{D}}^{\mathcal{L}} f^{!}(\mathcal{I})$

$M \leftarrow f_{!}\left(\left(M \bigotimes_{\mathbb{Z}_{D}}^{*} A_{D}\right) \bigotimes_{\mathbb{A}_{D}}^{*} f^{!}(\mathbb{Z})\right)$
Macounit
$\begin{array}{c} \text{Projection formula}\\ \text{M} \otimes f_1 f_1^{!}(\mathbb{Z}) \end{array}$
To see this is an equivalence, note:
(1) Both Sides preserve Colimits, So we can reduce to the case where $M = \prod_{I} \mathbb{Z}$ is a compact generator.
\mathbf{r}
(2) Since f! commutes with products and both agree when M=Z, the claim
(2) Since f! commutes with products and both agree when M=Z, the claim
(2) Since f! commutes with products and both agree when M=Z, the claim
(2) Since f! commutes with products and both agree when M=Z, the claim follows by noting that the RHS commutes with products.
(2) Since f! commutes with products and both agree when M=Z, the claim follows by noting that the RHS commutes with products.
(2) Since f' commutes with products and both agree when M=Z, the claim follows by noting that the RHS commutes with products.
(2) Since f! commutes with products and both agree when M=Z, the claim follows by noting that the RHS commutes with products.
(2) Since f! Commutes with products and both agree when M=Z, the claim follows by noting that the RHS commutes with products.

