Solid modules over $A_{\square}$ and $(A, \mathbb{Z})_{\square}$ \$ the exceptional pushforvard

Plan
(1) Motivation
(2) Theorem Statements
(3) Proofs of Theorems ↔ fairly involved

Key Motivation Generalize coherent duality to non-proper morphisms using Solid modules
most familiar:
Poincare duality for.
C form:
Serve Duality $k$ field; $X / k$ smooth proper $d$-dimensional

$$
w_{x / k}=\Omega_{x / k}^{d} \text { dualizing sheaf }
$$

(1) There is a natural trace map $\operatorname{tr}_{x / k}: H^{d}\left(x ; \omega_{x / k}\right) \rightarrow k: \int_{x}$
(2) For all $E \in \operatorname{Coh}(x)$, the pairing

$$
H^{( }(X ; E) \otimes_{k} E x x_{x}^{d-i}\left(E, w_{x / k}\right) \longrightarrow H^{d}\left(x ; w_{x / k}\right) \xrightarrow{t_{x / k}} k
$$

is perfect.
Reformulation

$$
\begin{aligned}
& \operatorname{H}^{d-i}\left(x ; \operatorname{Ham}_{x}\left(E, \omega_{x / k}\right)\right) \cong \operatorname{Hom}_{k}\left(H^{( }(x ; E) ; k\right) \\
& R \operatorname{Hom}_{x}\left(E, \omega_{x / k}\right)[d] \cong R \operatorname{Ham}_{k}(R \Gamma(x ; E) ; k)
\end{aligned}
$$

1. Write $f: X \rightarrow \operatorname{Spec}(k)$

$$
R \operatorname{Hom}_{x}\left(E, \omega_{x / k}\right)[d] \simeq \operatorname{RHom} k\left(R f_{*}(E), k\right)
$$

Recall from topology For Poincare Duality for hon compact manifolds, we need to use compactly Supported Cohomology
$R f_{*} \leadsto f_{1}$ exceptional pushforvard
This will exist on the level of solid modules

Goal for rest of Scholze's Notes. Show that in a very general setting, $f_{1}: D\left(\Theta_{x, \square}\right) \rightarrow D\left(R_{\square}\right)$ exists, and that without properness there is a trace

$$
\operatorname{tr}_{x / R} f_{1} w_{x / R}[d] \rightarrow R
$$

and duality equivalence

$$
R \operatorname{Ham}_{x_{D}}\left(E, w_{x / R}\right)[d] \stackrel{\sim}{\sim} R \operatorname{Hom}_{R}\left(f_{1}(E), R\right)
$$

Notation $\left(A, A[-]^{\wedge}, \alpha: A[-] \rightarrow A[-]^{n}\right)$ instead of $(\mathbb{A}, A, A \rightarrow A \rightarrow A)$

$$
\begin{aligned}
& \text { Solid }\left(A^{n}\right) \longleftrightarrow \operatorname{Mod} \text { cont }(A) \\
& D\left(A^{n}\right): D\left(\operatorname{Solid}\left(A^{n}\right)\right)
\end{aligned}
$$

Toward the Exceptional Pushforward f!
Goal The affine, absolute case Given a finitely gen discrete ring $A$, constrict

$$
f_{!}: D\left(A_{\square}\right) \longrightarrow D\left(\mathbb{Z}_{D}\right)
$$

Recall A finitely gen ring

$$
\begin{aligned}
& (A, \mathbb{Z})_{\square}:=\left(A, S \mapsto \mathbb{Z}_{\square}[S] \otimes \mathbb{\mathbb { Z }} A, A[S] \xrightarrow{\operatorname{can}} \mathbb{Z}_{\square}[S] \underset{\mathbb{Z}}{\otimes} A\right) \\
& \operatorname{can}_{A} \downarrow^{\prime}:=\left(A, S \longmapsto \lim _{i \in I} A\left[S_{i}\right], A[S] \xrightarrow{\operatorname{can}} \lim _{i \in I} A\left[S_{i}\right]\right)
\end{aligned}
$$

Motivation for $f_{1}$ To constrict exceptional pushforviards for non proper morphisms $f: X \rightarrow Y$, try to factor


$$
f_{!}:=\bar{f}_{*} j_{!}
$$

For uS $(A, \mathbb{Z})_{D}$ is the compactification!
$\Varangle$ Proof later
Lemma Let $A$ be a finitely gen ring. Then $A_{\square}$ is analytic and the morphism of preanalytic rings

$$
\operatorname{con}_{A}:(A, \mathbb{Z})_{D} \rightarrow A_{\square}
$$

is a morphism of analytic rings:
consequence We have a left adjoint

$$
j^{*}:=(-) \stackrel{\underline{\otimes}}{(A, Z)} A_{\square}: D\left((A, L)_{\square}\right) \longrightarrow D\left(A_{\square}\right)
$$

Write $j_{*}: D\left(A_{D}\right) \longrightarrow D\left((A, \mathbb{Z})_{\square}\right)$ for the right adjoint given by forgetting the $(A, Z)_{0}$-module structure.

Why $(A, I)_{\square}$ is a compactification

Key Point Solid $\left.((A, L))_{\square}\right)$ is supposed to be an enlargement of the category of quasicoherent sheaves on the adic Spectrum $\operatorname{Spa}(A, \tilde{\mathbb{Z}})$.
integral closure of in $(\pi \rightarrow A)$
Why $\operatorname{Spa}(A, \tilde{Z})$ ? $\operatorname{Spa}(A, \tilde{L})$ is a 'universal' (and functorial) compactification of $\operatorname{Spec}(A)$. However, Spa $(A, \tilde{L})$ is an adic Space, not just a scheme.
Defining Spa $(A, \tilde{\mathbb{U}})$ We want a factorization
also called Spiv (A), the


Valuation Spectrien
in a universal way.

- USe the valuative criterion for properness to define the points of the 'compactification' $\operatorname{Spa}(A, \mathbb{Z})$.

Not the most general Version, but least complicated Valuative Criterion for Properness $p: X \rightarrow Y$ orphism of finite type between 10 cally Noetherian schemes. Then $p$ is proper if and only if for every valuation ring $V$ and commutative square

there exists a unique lift $\operatorname{spec}(V) \Longrightarrow X$ making the diagram commute.
Point We should define points of our desired compactification $\operatorname{spa}(A, \tilde{Z})$ to be commutative squares

these $\rightarrow$ are not actually extra data, but become relevant in the: relative setup.
>. This set is quotiented out by the equivalence relation generated by the following relation: given a surjection of spectra of valuation rings
$\operatorname{Spec}(W) \longrightarrow \operatorname{Spec}(V)$
(ie, faithfully flat map.), we say that the elements defined by the right hand square and outer rectangle in the diagram

are equivalent.

- Then one has to put a topology on Spa ( $A, \tilde{Z}$ ) as well as a sheaf of ring $S$.
$\geq$ One can then Show that $f: \operatorname{Spec}(A) \rightarrow \operatorname{Spec}(\not Z)$ factors as a composite of maps of locally ringed spaces
Similarly. There is an adic spectrum Spa( A, A) defined by replacing A by $\mathbb{Z}$

$$
\operatorname{Spa}(A, A)=\{\operatorname{Spec}(V) \longrightarrow \operatorname{Spec}(A)\} \mid \sim
$$

3 There is a map

$$
\begin{aligned}
& \operatorname{Spa}(A, A) \xrightarrow[\operatorname{can}_{A}]{\operatorname{Spa}(A, \tilde{L})} \\
& {[\operatorname{Spec}(V) \stackrel{\phi}{\longrightarrow} \operatorname{Spec}(A)] \stackrel{ }{\longrightarrow}\left[\begin{array}{l}
\operatorname{Spec}(\operatorname{Trac}(V)) \xrightarrow{\phi_{j}} \operatorname{Spec}(A) \\
\int_{j \operatorname{lec}} \\
\operatorname{Spec}(V) \xrightarrow[f \phi]{\longrightarrow}
\end{array}\right]}
\end{aligned}
$$

Observation Write

$$
\operatorname{Spa}(A, A)_{\text {riv }} \subset \operatorname{Spa}(A, A) \text { and } \operatorname{Spa}(A, \tilde{\mathbb{L}})_{\text {riv }} \subset \operatorname{Spa}(A, \tilde{\mathbb{L}})
$$

for the equivalence classes with a representative where $V$ is afield (ie., a rank 0 valuation ring). Note that:
(1) The map can A restricts to a bijection

$$
\operatorname{Can}_{A} \operatorname{Spa}(A, A)_{\text {ri }} \sim \operatorname{Spa}(A, \tilde{\mathbb{L}})_{\text {riv }}
$$

(2) The map

$$
\begin{aligned}
& \operatorname{Spec}(A) \operatorname{Spa}(A, A) \\
& p \longmapsto[\operatorname{spec}(k(p)) \longrightarrow \operatorname{Spec}(A)]
\end{aligned}
$$

is infective with image $\operatorname{Spa}(A, A)$ riv.
(3) There are retractions

$$
\left.\begin{array}{rl}
\operatorname{Spa}(A, A) & r \operatorname{Spa}(A, A)+\operatorname{TrV} \cong \operatorname{Spec}(A) \\
{[\operatorname{Spec}(V) \rightarrow \operatorname{Spec}(A)]} & \longrightarrow \operatorname{Spec}(\operatorname{Frac}(V))
\end{array}>\operatorname{Spec}(A)\right] .
$$

and

$$
\begin{aligned}
& \operatorname{Spa}(A, \tilde{Z}) \longrightarrow \operatorname{Spa}(A, \tilde{Z})_{+r i v} \cong \operatorname{Spec}(A) \\
& {\left[\begin{array}{ccc}
\operatorname{Spec}(\operatorname{Frac}(V)) & \operatorname{Spec}(A) \\
\downarrow_{1} \\
\operatorname{Spec}(V)
\end{array}\right] \operatorname{Spec}(\mathbb{Z}) .\left[\begin{array}{cc}
\operatorname{Spec}(\operatorname{Frac}(V)) & \longrightarrow \\
\operatorname{Spec}(A) \\
\operatorname{Sec}(\operatorname{Frac}(V)) & \downarrow
\end{array}\right]}
\end{aligned}
$$

Theorem There is a fully faithful functor

$$
\text { Sch heth } \longleftrightarrow \text { Adic Spaces\} }
$$

that Sends Spec $(A)$ to Spa $(A, A)$. Moreover, there is an isomorphism of locally ringed Spaces

$$
\left(\operatorname{spec}(A), O_{\operatorname{spec}(A)}\right) \cong\left(\operatorname{spa}(A, A) \text { triv }, r_{*} O_{\operatorname{spa}(A, A)}\right)
$$

Upshot We get a factorization

2. Theorem Statements

Theorem 1 A finitely generated $\mathbb{Z}$-algebra:
(1.1) $j^{*}$ admits a fully faithful left adjoint $j_{!}: D\left(A_{\square}\right) \hookrightarrow D\left((A, Z)_{\square}\right)$.

$$
\Leftrightarrow j * f f
$$

(1.2) Projection formula for $\left.M \in D((A, Z))_{\square}\right)$

$$
\left.\left.D\left(A_{D}\right) \underset{j^{*}}{\stackrel{j^{*}}{\rightleftarrows} D((A, L)}\right)_{D}\right)
$$

$$
j_{1} j^{*}(M) \simeq M \otimes j_{1}(A)
$$

Def Let $f: \operatorname{Spec}(A) \rightarrow \operatorname{Spec}(\mathbb{Z})$ be a finitely gen $\mathbb{Z}$-algebra. Write

$$
f_{1}: D\left(A_{\square}\right) \xrightarrow{j!} D\left((A, Z)_{\square}\right) \xrightarrow{\text { forget }} D\left(\mathbb{Z}_{\square}\right)
$$

? Since j! and the forgetful functor are left adjoints, f! admits a right adjo int $f^{\prime}: D\left(Z_{D}\right) \rightarrow D\left(A_{D}\right)$.

Theorem 2 f: $\operatorname{spec}(A) \rightarrow \operatorname{spec}(\mathbb{Z})$ finitely gen: $\mathbb{Z}$-algebra Then:
(2.1) $f^{!}$is a left adjoint.
$\$$ since $D\left(A_{\square}\right)$ and $D\left(\mathbb{Z}_{0}\right)$ are compactly generated
(2.2) Ai preserves compact objects
(2.3) Projection formula for all $M \in D\left(\mathbb{Z}_{D}\right), N \in D\left(A_{D}\right)$

$$
f_{1}\left(\left(M_{\square}^{\otimes} A_{\square}\right)^{\frac{L}{\otimes}} N\right) \simeq M_{D}^{\perp} f_{1}(N)
$$

Theorem $3 f: \operatorname{spec}(A) \rightarrow \sec (\mathbb{Z})$ finitely gen: $\mathbb{Z}$-algebra. Then:
(3.1) $f^{\prime}: D\left(\mathbb{Z}_{D}\right) \rightarrow D\left(A_{D}\right)$ is given by $f^{\prime}(M) \simeq\left(M_{\mathbb{Z}}^{L} A_{D}\right) A_{D} f^{\prime}(\mathbb{Z})$
(3.2) $f^{\prime}(\mathbb{Z})$ is a bounded complex of discrete $A$-modules.
(3.3) $f^{\prime}: D\left(\mathbb{Z}_{D}\right) \rightarrow D\left(A_{D}\right)$ presences discrete objects $\Leftarrow(311)+(32)$
(3.4) If $f$ is a complete intersection, then $f^{\prime}(\mathbb{I}) \in D(A)$ is invertible:

3 Proofs of Theorems

Initial Reduction Can reduce to $A=\mathbb{Z}[t]$.
(1) Since $A$ is $f g$, we can choose a surjection

$$
\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right] \rightarrow A
$$

A simple base change argument tets us reduce to $A=\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$.
(2) An inductive argument lets us reduce to $n=1$.

Key Idea $f_{!}(A)$ can be computed as 'functions near the boundary' of $\operatorname{Spec}(A)$.

$$
A \vdots \mathbb{Z}[t], A_{\infty}:=\mathbb{Z}\left(t^{-1} \mathbb{D}\right.
$$

> Well Show

$$
\begin{aligned}
& j!(A) \simeq\left(\mathbb{Z}\left(t^{-1}\right) / \mathbb{Z}[t]\right)[-1] \\
& f^{\prime}(\mathbb{Z}) \simeq \mathbb{Z}[t][1]
\end{aligned}
$$

Goal. Once we know that $A_{\square}$ is analytic, we know

$$
D\left(A_{\square}\right) \subset D\left(\operatorname{Mod}^{\operatorname{con}}(A)\right)>D\left((A, Z)_{\square}\right)
$$

We then want to
(1) Show that the forgetful functor $\left.j_{*}: D(A D) \rightarrow D((A, Z))_{D}\right)$ is an inclusion:
(2) Provide an embedding $D\left(A_{\infty}\right) \hookrightarrow D\left((A, \mathbb{Z})_{D}\right)$
(3) Show that $D\left((A, Z)_{D}\right)$ is the recollement of $D\left(A_{\square}\right)$ with $D\left(A_{\infty}\right)$.


In fact, (2) and (3) will be used to show $A_{0}$ is analytic:

Step 2
Recall Let $(C, \otimes, 1)$ be a symmetric monoidal os-category. A commutative algebra $R$ is $C$ is idempotent if the multiplication $R \otimes R \rightarrow R$ is an equivalence
$\rightarrow$ In this case, being an $R$-module is a property the forgetful functor $\operatorname{Mod}_{R}(C) \rightarrow C$ is fully faithful with image those $X \in C$ Such that

$$
Y \otimes 1 \xrightarrow{\text { id unit }} Y \otimes R
$$

is an equivalence
Point Want to show that $A_{\infty}$ is idempotent in $D\left((A, Z)_{0}\right)$.
Observation 1 There is a Short exact sequence

$$
0 \rightarrow \mathbb{Z} \mathbb{U} \rrbracket \otimes \mathbb{Z}[t] \xrightarrow{u t-1} \mathbb{Z} \mathbb{C} u \mathbb{\mathbb { Z }} \mathbb{Z}[t] \longrightarrow \mathbb{Z}\left[t^{-1} \rrbracket \longrightarrow 0\right.
$$

 in solid $\left((A, Z,)_{\square}\right)$.

Consequence 3 using this presentation of $A_{\infty}$, we see that milt $A_{\infty}^{\stackrel{L}{\otimes}} A_{\infty} \sim A_{\infty}$

Consequence 4

$$
\begin{aligned}
& \text { (-) \& A A } \\
& \operatorname{Mod}_{A_{\infty}}\left(D\left((A, \mathbb{Z})_{\square}\right)\right) \underset{\sim}{\stackrel{1}{c}} D\left((A, \mathbb{Z})_{\square}\right) \\
& M \xrightarrow[\sim]{\sim} \underset{(A, L)_{0}}{L} A_{\infty}
\end{aligned}
$$

Lemma 5 Let $C_{*} \in D\left(\bmod { }^{\text {lond }}(A)\right)$ be such that each $C_{i}$ is a direct Sum of products of copies of $A$. Then

$$
\operatorname{RHom}_{A}\left(A_{\infty}, C_{*}\right) \simeq 0
$$

Proof
Since $D\left((A, C)_{0}\right) \subset D\left(\operatorname{Mod}^{\text {and }}(A)\right)$ is closed under limits $\$$ colimits:
(1) By writing $C_{*} \simeq \lim _{n} \underbrace{C_{* \geq n}}_{\text {brutal }}$, can assume $C_{*}$ is connective
(2) Since $A_{\infty}$ is compact, by writing $C_{*}$ as a filtered colimit, suffices to treat the case $C_{*}=\prod_{I} A$

$$
\text { m reduces to } C_{*}=A \text {. }
$$

By Observation 1,

$$
\begin{aligned}
& \operatorname{RHon}_{A}\left(A_{\infty}, A\right) \simeq\left[\operatorname{RHom}_{\mathbb{Z}}(\mathbb{Z} \llbracket u \rrbracket, A) \xrightarrow{u t-1} \text { RHo }_{\mathbb{Z}}(\mathbb{Z} \llbracket u \rrbracket, A)\right] \\
& \simeq\left[A\left[u^{-1}\right] / A \xrightarrow{u^{t-1}} A\left[u^{-1}\right] / A\right] \\
& \simeq\left[\mathbb{Z}\left[u^{-1}\right] \xrightarrow[\sim]{-1} \mathbb{Z}\left[u^{-1}\right]\right] \leftrightarrows \text { acyclic }
\end{aligned}
$$

Lemma 6 For any set I,

$$
\operatorname{coker}\left(A \underset{\Psi}{\otimes} \prod_{I} \longrightarrow \prod_{I} A\right) \in D\left(A_{\infty}\right)
$$

3 Need this fact + Lemma 6 to see that $A_{D}$ is analytic.

Proof


Proof that $\mathbb{Z}[t]_{\square}$ is analytic
Let $C_{*} \in D(\operatorname{Mod}$ ind $(A))$ be such that each $C_{i}$ is a direct sum of products of copies of $A$.
Need to Show For $S$ extremally disconnected,

$$
\operatorname{RHom}_{A}\left(A[s] ; C_{*}\right) \simeq \operatorname{RHom}_{A}\left(A_{[ }[s] ; C_{*}\right)
$$

Since $C_{*} \in D\left((A, \mathbb{Z})_{\square}\right)$, we know that

$$
\left.R \operatorname{Hom}_{A}\left(A[s], C_{*}\right) \simeq \operatorname{RHom}_{A}(A, L)_{D}[s], C_{*}\right)
$$

Since $\mathbb{Z}_{\square}[S] \cong \prod_{I} \mathbb{Z}$ for some set $I$, we have

$$
(A, \mathbb{Z})_{\square}[S] \cong A \prod_{\mathbb{Z}}^{\otimes} \mathbb{Z} \text { and } A_{\square}[S] \cong \prod_{I} A
$$

So we need to see that

$$
\operatorname{RHOm}_{A}\left(A \otimes \prod_{I} \mathbb{Z}, C_{*}\right) \simeq \operatorname{RHAn}_{A}\left(\prod_{I} A, C_{*}\right)
$$

Equivalently, that

$$
\begin{aligned}
& R H O m_{A}\left(A, C_{*}\right) \sim 0
\end{aligned}
$$

Proof of Theorem 1
Lemma 7 $\operatorname{ker}\left(j^{*}: D\left((A, \mathbb{Z})_{\square}\right) \rightarrow D\left(A_{\square}\right)\right)=D\left(A_{\infty}\right)$
Proof

$2 \operatorname{Ker}(j *)$ is generated by the $A_{\infty}$-modules Lemma 6

$$
\operatorname{Coker}\left(A \otimes \prod_{I} \longrightarrow \prod_{I} A\right)
$$

Recollection on Recollements
Definition Let $X$ be a stable $\infty$-category and

$$
i_{*} z \longleftrightarrow x \text { and } j_{*}: U \hookrightarrow x
$$

Stable subcategories. We say $x$ is the recollement of $(z, u)$ if:
(1) $i_{*}: z \hookrightarrow x$ admits a left adjoint $i^{*} x \rightarrow z$.
(2) $j_{*}: u \longrightarrow x$ admits a left adjoint $j^{*} x \rightarrow u$.
(3) The composite $z \xrightarrow{i_{*}} x \xrightarrow{j^{*}} u$ is zero.
(4) The functors $i^{*}: x \rightarrow z$ and $j^{*}: x \rightarrow u$ are jointly conservative.

Lemma In this situation:
(1) i i* admits a right adjoint $i^{\prime}: x \rightarrow z$ defined by

$$
u_{*} u^{\prime}=f i b\left({ }_{d_{x}} \quad \text { unit } j_{*} d^{*}\right)
$$

free since $j_{*}$ is ff
(2) $j^{*}$ admits a fully faithful left adjoint $j: u \hookrightarrow x$ defined by

$$
j i j=f i b\left(i_{x} \quad \text { unit } v_{k}^{*}\right)
$$

(3) $j_{*}: U \hookrightarrow X$ identifies $U$ with the right orthogonal complement

$$
z^{1}=\left\{x \in X \mid \forall z \in z, \operatorname{Map}_{x}\left(i_{*}(z), x\right) \sim 0\right\}
$$

(4) $j_{1}: U \longleftrightarrow x$ identifies $U$ with the left or thogonal complement

$$
\mathcal{I}_{z}:=\left\{x \in X \mid \forall z \in Z, \operatorname{Map}\left(x, i_{*}(z)\right) \simeq 0\right\}
$$

Picture $z \underset{i^{*}}{\stackrel{i^{*}}{\leftrightarrows}} x \underset{j_{*}}{\leftrightarrows} \underset{-i^{*} \rightarrow}{\leftrightarrows} u$

Lemma Assume we are given adjunctions of stable $\infty$-categones

$$
z \xrightarrow[i_{*}]{\stackrel{i^{*}}{L^{\prime}}} \times \underset{j_{*}}{\stackrel{j^{*}}{\rightleftarrows}} u
$$

The following are equivalent:
(1) $X$ is the recollement of $(z, u)$
(2) $z \simeq \operatorname{ker}\left(j^{*}: x \rightarrow u\right)$

Back to Theorem 1

Our Situation
and $D\left(A_{\infty}\right)=\operatorname{ker}\left(j^{*}\right)$ By the Lemma:
$\geq$ There is an extreme fully faithful left adjoint j!:D( AD) $\left.\hookrightarrow D(A, \Pi)_{\square}\right)$. Computing using the formula for jul, we see that

$$
\begin{aligned}
& j_{i j}^{*}(M)=\text { fib }\left(\begin{array}{l}
\left.M \underset{(A, Z)_{\square}}{L} A_{\square} \longrightarrow M(A, Z)_{\square} A_{\infty}\right)
\end{array}\right. \\
& \simeq M_{(A, Z)}^{\otimes} \text { fib }(A \rightarrow A \infty) \\
& \simeq M \stackrel{\&}{(A, Z)_{D}} A / A_{\infty}[-1]
\end{aligned}
$$

Projection Formula (1.2)

$$
j i j^{*}(M) \simeq M \otimes j_{(A, Z)}(A)
$$

Immediate from the definition of $j$ !


Proof of Theorem 2
Proof that $f$ ! preserves compact objects (2:2)
The objects $\Pi_{I}$ A form a collection of compact generators for $D\left(A_{D}\right)$. Computing:

$$
\begin{aligned}
j_{1}\left(\prod_{I}\right) & \simeq j_{1} j^{*}\left(A \mathbb{Z}_{I} \mathbb{Z}\right) \\
& \simeq\left(A^{A} \mathbb{R}^{\mathbb{Z}}\right)(A, \mathbb{Z})_{\square}\left(A_{\infty} / A\right)(-1] \\
& \simeq \Gamma_{I} \mathbb{\mathbb { Z } _ { \square }}\left(A_{\infty} \mid A\right)[-1]
\end{aligned}
$$

Prop. (6.3

$$
\left(\prod_{I}\right) \mathscr{Z}_{\mathbb{R}^{\prime}}(\Pi \mathbb{\pi}) \approx \mathbb{Z} \prod_{I}\left(A_{\infty} \mid A\right)[-1]
$$

Now note that

$$
A_{\infty}\left|A=\mathbb{Z}\left(t^{-i}\right)\right| \mathbb{Z}[t]
$$

is compact in $D\left(\mathbb{Z}_{D}\right)$.

Proof of Projection Formula $(2: 3)$
We want to show that for all $M \in D\left(\mathbb{Z}_{\square}\right)$ and $N \in D\left(A_{\square}\right)$,

$$
f_{!}\left(\left(M_{\mathbb{Z}_{D}}^{\otimes_{D} A_{D}}\right)_{A_{D}}^{\otimes_{0}}\right) \sim M_{Z_{D}}^{\otimes_{1}} f_{1}(N)
$$

For this; it suffices to prove the more refined formula
(*)

Note that:
(1) After $(-) \otimes A_{\infty}$, both terms vanish:
(2) After applying $j^{*}$, both sides are the same.

The recollement of $D\left((A, \mathbb{Z})_{D}\right)$ into $D\left(A_{D}\right)$ and $D\left(A_{\infty}\right)$ shows that (*) holds.

Proof of Theorem 3
Proof that $f^{\prime}(\mathbb{Z})$ is discrete + invertible $(3.2)+(3.4)$

$$
\begin{aligned}
& f^{\prime}(\mathbb{Z}) \simeq \operatorname{RHom}_{\mathbb{Z}}\left(f_{!}(\mathbb{Z}(t]), \mathbb{Z}\right) \text { adjunction } \\
& \simeq \operatorname{RHan}_{\mathbb{Z}}\left(\left(\mathbb{Z}\left(t^{-1}\right) \mid \mathbb{Z}[t]\right)[-1], \mathbb{Z}\right) \\
& \simeq \operatorname{RHO}_{\mathbb{Z}}\left(\mathbb{Z}\left(\mathbb{t} \mathbb{L}^{-1} D\right] \mathbb{R}[t], \mathbb{Z}\right)[1] \\
& \simeq \mathbb{Z}[t][1] \text { cofiber sequence for } \mathbb{Z}\left[t^{-1} D\right][t]
\end{aligned}
$$

Proof of formula for $f^{\prime}$ (3.1)
We want to Show

$$
f^{\prime}(M) \simeq\left(M \stackrel{L^{*}}{\mathbb{Z}_{D}} A_{0}\right){\underset{A}{D}}_{A_{D}}^{f^{!}(\mathbb{Z})}
$$

Note that by adjunction

$$
f^{\prime}(M) \longleftarrow\left(M_{Z_{D}}^{\stackrel{L}{\otimes} A_{0}}\right)^{L}{\underset{A}{D}}_{\otimes}^{A_{D}} f^{!}(Z)
$$



To see this is an equivalence, note:
(1) Both Sides preserve colimits, So we can reduce to the case where $M=\prod_{I} \mathbb{Z}$ is a compact generator.
(2) Since $f^{\prime}$ commutes with products and both agree when $M=\mathbb{Z}$, the claim follows by noting that the RHS commutes with products


